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Abstract
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if the verifier picks its random coins using a pseudorandom function.
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1 Introduction

Zero-knowledge (ZK) interactive protocols [GMR89] are paradoxical constructs that allow one player
P (called the prover) to convince another player V (called the verifier) of the validity of a mathemat-
ical statement x ∈ L, while providing zero additional knowledge to the verifier. This is formalized
by requiring that the view of an adversarial verifier, V ∗, during an interaction with the prover P ,
can be efficiently reconstructed by a so-called simulator, S. A particularly attractive notion of zero-
knowledge, called black-box zero-knowledge [GO94], requires the existence of a universal simulator
S that can generate the view of any V ∗ when given black-box access to V ∗.

A fundamental question regarding zero-knowledge protocols is whether their composition re-
mains zero-knowledge. Three basic notions of compositions are sequential composition [GMR89,
GO94], parallel composition [FS90, GK96b] and concurrent composition [FS90, DNS04]. In a se-
quential composition, the players sequentially run many instances of a zero-knowledge protocol, one
after the other. In a parallel composition, the instances instead proceed in parallel, at the same
pace. Finally, in a concurrent composition, messages from different instances of the protocol may
be arbitrarily interleaved.

While the definition of ZK is closed under sequential composition [GO94], this no longer holds
for parallel composition [GK96b] (and thus not for concurrent composition either). However, there
are zero-knowledge protocols for all of NP that have been demonstrated to be secure under both
parallel and concurrent composition. For the case of parallel composition, constant-round protocols
are known [Gol02, FS90, GK96a]. For the case of concurrent composition, a series of work [RK99,
KP01, PRS02] show feasibility of Õ(log n)-round black-box ZK protocols; furthermore, this round-
complexity is essentially optimal with respect to black-box ZK [KPR98, Ros00, CKPR01].

Whereas the original ZK protocols of [GMR89, GMW91, Blu86] are public-coin—i.e., the ver-
ifier’s messages are its random coin-tosses—all of the aforementioned parallel or concurrent ZK
protocols use private coins. Indeed, in their seminal paper, Goldreich and Krawczyk [GK96b] show
that only languages in BPP have constant-round public-coin (stand-alone) black-box ZK protocols
with negligible soundness error, let alone the question of parallel composition. In particular, their
results imply that (unless NP ⊆ BPP) the constant-round ZK protocols of e.g., [GMW91, Blu86]
with constant soundness error cannot be black-box ZK under parallel repetition (as this would yield
a constant-round black-box ZK protocol with negligible soundness error).

A natural question is whether the constant-round restriction imposed by the [GK96b] result is
necessary. Namely,

Is there a (possibly super-constant round) public-coin black-box ZK protocol that is secure
under parallel (or even concurrent) composition?

1.1 Our Results

In this work, we provide a negative answer to the above question. Namely, we show that only
languages in BPP have public-coin black-box ZK protocols that remain secure under parallel (and
thus also concurrent) composition, regardless of round complexity.

Theorem (Informal). If L has a public-coin argument that is black-box ZK and secure under parallel
composition, then L ∈ BPP.

In fact, our result establishes that any public-coin, black-box ZK protocol for a non-trivial language
that remains secure under m parallel executions must have Ω̃(m1/2) rounds.

On the positive side we show that every language in NP has a public-coin black-box ZK proof
that remains secure under an a-priori bounded number of concurrent (and thus parallel) executions.
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Theorem (Informal). Assume the existence of one-way functions. Then for every polynomial m,
there exists an O(m3)-round public-coin black-box ZK for NP that is secure under m-bounded con-
current composition.

An earlier result of Barak [Bar01] also constructs public-coin bounded-concurrent ZK protocols that
additionally have constant rounds. However, Barak’s construction is an argument (rather than a
proof), assumes collision-resistant hash-function, and uses non-black-box simulation.

Finally, we briefly turn to compositions in models with trusted set-up. Canetti, Goldreich,
Goldwasser and Micali [CGGM00] show that in the Bare Public-Key (BPK) Model, where each
player has a registered public-key, constant-round black-box concurrent ZK protocols exist for all of
NP (whereas in the plain model without set-up, as mentioned earlier, Ω̃(log n) rounds are necessary
for non-trivial languages [CKPR01]). We show that for the case of public-coin protocols, the BPK
setup does not help with composition.

Theorem (Informal). If L has a public-coin argument in the BPK model that is black-box parallel
ZK, then L ∈ BPP.

We remark that our lower bound does not extend to more elaborate public-key setups. For
example, Damgård [Dam00] shows that a public key infrastructure with a certification authority
can be used to construct constant-round public-coin arguments that are black-box concurrent zero-
knowledge.

As we will see, some of the intermediate ideas in our work are closely related to the notion of
resettable soundness [BGGL01]. Very informally, we establish that parallel repetition of public-coin
protocols not only reduces the soundness error [PV07, HPWP10], but also qualitatively strengthens
the soundness—roughly speaking, the new protocols will be secure under a “resetting” attack.

1.2 Techniques

To describe our techniques, first recall the Goldreich-Krawczyk [GK96b] lower bound that only
languages in BPP have O(1)-round public-coin black-box ZK protocols. Let Π = 〈P, V 〉 be a public-
coin black-box ZK protocol for a language L, and consider an adversarial verifier V ∗ that, instead
of picking its messages at random, computes them by applying a hash function to the current
transcript. [GK96b] shows that any black-box simulator S, together with V ∗, can decide L: on
input x, simply run SV

∗
(x) and accept if S outputs an accepting view of V ∗. Using the zero-

knowledge property of Π, if x ∈ L, then SV ∗(x) will output an accepting view of V ∗ (because an
honest prover would convince V ∗). The crux of their proof is then to show that if x /∈ L, then
SV
∗
(x) will not output an accepting view. If S does not rewind V ∗, this would directly follow from

the soundness of Π. However, S may rewind V ∗, and may only convince V ∗ in one of its rewinding
“threads”. Nonetheless, [GK96b] manages to show that if S, by rewinding or “resetting” V ∗, manages
to trick V ∗ into accepting x /∈ L, then we can construct a machine T (based on S) that manages to
convince an external verifier V (without rewinding V ), contradicting the soundness of the protocol.
In other words, they show that any O(1)-round public-coin protocol is sound under a resetting-
attack [CGGM00, BGGL01], where the statement is fixed and the prover (simulator) running time
is bounded by a fixed polynomial. Analogously, to prove our results, we show that any public-coin
interactive protocol, repeated sufficiently many times in parallel, (and again letting the verifier pick
its messages by applying a hash function to the transcript), is sound under a resetting-attack.

Previous reductions. The work of [GK96b], as well as all subsequent black-box lower bounds (e.g.,
[KPR98, Ros00, CKPR01, BL02, Kat08, HRS09]) relies on the following approach for constructing
the stand-alone (non-resetting) prover T , given the rewinding simulator S. T incorporates S and
internally emulates an execution of S with an internally emulated verifier (which of course can be
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rewound). During the emulation, T appropriately picks some messages sent by S to the internal
verifier, and forwards them to an external verifier (and also forwards back the responses). The crux
of the various lower bounds lies in choosing the externally forwarded messages so that the external
verifier is convinced. The difficulty of this task stems from the fact that, at the time of deciding
whether to externally forward a message or not, T does not yet know if S will eventually choose this
message to “continue” its simulation (and use it as part of the output view), or treat this message
simply as a “rewinding” (used to collect information).

For the case of constant-round protocols, [GK96b] shows that externally forwarding a random
selection of messages works; if the protocol has d rounds, this random selection is “correct” with
probability at least 1/qd, where q is the number of queries made by the simulator to the verifier.
This approach of simply running the simulator S “straight-line” seems hard to extend to protocols
with a polynomial number of rounds; the number of possible choices for messages to forward to the
external verifier becomes too large.1

Our reduction. In our work, we are given a zero-knowledge protocol Π = 〈P, V 〉 for a language
L that is secure under parallel repetitions. Building on the same framework as [GK96b], we let
V m∗ be a verifier that starts m parallel sessions and generates its messages using hash-functions,
let S be the black-box zero-knowledge simulator, and use SV m∗ to decide L. As we will see, we
choose the number of parallel sessions, m, as a (polynomial) function of the number of rounds in
Π. Following the same argument, it is enough to show that on input x /∈ L, S cannot produce an
accepting view of V m∗. Because we may view S as a rewinding/resetting prover, it is equivalent to
show that protocol 〈Pm, V m∗〉 is sound under resetting attacks. In the rest of this section we omit
the common input x.

The crux of our work is then the following reduction: Given S, a resetting cheating prover of
the parallelized protocol that convinces V m∗, we show how to construct T , a straight-line (non-
rewinding) cheating prover of the original single session protocol that convinces V ; this contradicts
the soundness of protocol Π. To further clarify the difference between S and T , let us compare
the transcripts of an interaction between T and V , and of an interaction between S and V m∗.
A transcript of the interaction between T and V is simply a transcript of a single session of the
protocol Π; each query from T to V is simply a prefix of the transcript that extends the previous
query by one round of the protocol. A transcript of the interaction between S and V m∗ can be
much longer due to rewinds; furthermore, each query from S to V m∗ is a prefix of a transcript of
the parallelized protocol.

On a high level, T internally runs S with an internally simulated V m∗, and externally interacts
with an external verifier V . In order to take advantage of S to convince the external verifier V , T
“embeds” the interaction with V into the interaction between S and V m∗. This “embedding” is not
straightforward for the following two reasons. Firstly, just as in [GK96b], the external verifier V
cannot be reset, whereas S may reset V m∗ many times (i.e., S can make many more queries than
the number of rounds of the protocol); as we will explain shortly, T carefully picks a subset of the
rewindings to forward externally. Secondly, recall that V is a single session verifier, whereas V m∗

is a m-session parallel verifier (looking forward, the reason we let V be a single session verifier is to
enable T to appropriately pick which rewindings to forward). Therefore, T embeds the interaction
with V only into a single session i of the m parallel sessions in the interaction between S and V m∗;
in fact, session i is picked uniformly random at the beginning and fixed throughout the execution of

1For the case of sub-logarithmic-round protocols, Canetti, Kilian, Petrank and Rosen [CKPR01] show that when
given the freedom to construct a concurrent adversarial verifier that can schedule messages in an arbitrary way, there
exists some particular scheduling which makes it easy to identify appropriate messages to forward externally. Their
work has the advantage that it applies to private-coin zero-knowledge protocols, but is not applicable in our setting
due to the use of concurrent adversarial verifiers, and being limited to sub-logarithmic-round protocols. Incidentally,
they also run the simulator S in a straight-line manner.
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the reduction (looking forward again, the fact that session i is picked uniformly will be important
for our analysis).

To summarize, T only externally forwards a subset of the S queries, and only forwards component
i (corresponding to session i) of those queries. T then forwards back external responses from V as
component i of the same subset of V m∗ responses; all other V m∗ responses are picked uniformly at
random by T internally (this includes all except component i in the responses to the selected subset
of S queries, and all components of the remaining responses). Here we rely on the fact that Π is
public-coin in order for T to generate V m∗ responses in the forwarded session, despite the fact that
other verifier responses in the forwarded session may be externally generated by V .

Recall that the difficulty of the reduction comes from choosing which S queries to forward
externally. As remarked earlier, the approach of running S in a straight-line manner seems unlikely
to work for polynomial-round protocols. Instead, we let T rewind S (while S itself believes it
is rewinding the internally simulated V m∗). Our strategy is twofold. Firstly, T only externally
forwards (component i of) queries that have a good chance of being included by S in its output (by
assumption, S outputs a sequence of queries that convinces V m∗); because the protocol is public-
coin, we can estimate this chance by doing internal test-runs. Secondly, once we have forwarded
(component i of) a query, we “force” S to include the query in its output by repeatedly rewinding
S while re-picking the internally generated V m∗ messages (thus skewing the distribution of the
internally generated V m∗ messages).

To analyze T , we need to show that S would successfully convince the internally simulated V m∗,
even though T has embedded the external interaction with V into the interaction between S and
V m∗. Note that the success probability of S depends only on two inputs: the internally simulated
V m∗ messages, and the embedded external V messages (these can be found only in the forwarded
session i). These two types of messages differ in that the internally simulated V m∗ messages are
picked by T , through the help of test-runs, to be “good”, while the external V messages are just
uniform samples. We first show that if T is also allowed to rewind the external verifier V (which we
cannot), ensuring that internal V m∗ messages and external V responses are both “good”, then T only
needs to perform polynomially many rewinds in order for S to successfully convince V m∗. Next, to
remove the assumption of rewinding V , we use a probabilistic lemma due to Raz [Raz98], originally
used to prove that parallel repetition reduces the soundness error in two-prover games. We show
that if there are enough parallel sessions, then not being able to pick “good” verifier responses in
just one random session only introduces a small statistical error; since session i is picked uniformly
at random at the beginning, this suffices for bounding the success probability of T .

ZK lower bounds and soundness amplification. As an independent contribution, we be-
lieve that our techniques elucidate an intriguing (and useful) connection between lower bounds
for black-box ZK, and feasibility results for soundness/hardness amplification. Our techniques
share many similarities with works on soundness amplification under parallel repetitions, such as
[BIN97, PV07, IJK07], and especially [HPWP10]; in particular, our use of Raz’s lemma is simi-
lar to its use in [HPWP10]. Whereas those works show how to transform a parallel prover with
“small” success probability into a stand-alone prover with “high” success probability, we have adapted
their techniques to transform a rewinding/resetting parallel prover into a non-rewinding stand-alone
prover.

As a further example of this connection, we extend our lower bound to the BPK model by
relying again on techniques developed for soundness amplification. In the BPK model, we have the
additional problem that the external verifier can decide whether to accept or reject based on its
secret key, which T does not know. Consequently, T cannot determine whether the external verifier
would accept or reject when doing test-runs, which is crucial for deciding which messages to forward
externally. By relying on the “trust-halving” technique from [IW97, BIN97], and its refinement in
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[HPWP10], we show how T can make “educated guesses” on whether the external verifier accepts
or not.

Extension to resettable soundness. More generally, the above techniques show how to transform
a public-coin protocol so that it is sound under a weak form of resetting attack: where the statement
is fixed, and the number of resets is a-priori bounded. Simply take a public-coin protocol, sufficiently
repeat it in parallel, and let the verifier generate its messages by applying hash-functions to the
current transcript. If the verifier uses pseudo-random functions instead of hash-functions as in
[BGGL01], then we may remove the a-priori bound on the number of resets. Additionally, we show
that if the original protocol is also a proof of knowledge [GMR89, FS90, BG02], then the parallelized
version satisfies the original (strongest) notion of resettable-soundness from [BGGL01], where the
adversarial prover can also change the statement between resets. [BGGL01] showed a similar type
of result for O(1)-round public-coin proofs of knowledge.

Outline. We give some preliminaries in Sect. 2, and jump into our impossibility results in Sect. 3
(standard model) and Sect. 4 (bare-public-key model). We then present our public-coin bounded-
concurrent zero-knowledge protocol in Sect. 5. Details of our application to resettable soundness
can be found in Sect. 6.

2 Preliminaries

We assume familiarity with indistinguishability, interactive proofs and commitments. |x| denotes
the length of a (bit) string x, and [n] denotes the set {1, . . . , n}.

2.1 Interactive Protocols

An interactive protocol Π is a pair of interactive Turing machines, 〈P, V 〉, where V is probabilistic
polynomial time (PPT). P is called the prover, while V is called the verifier. 〈P, V 〉 (x) denotes
the random variable (over the randomness of P and V ) representing V ’s output at the end of the
interaction on common input x. If additionally V receives auxiliary input z, we write 〈P (x), V (x, z)〉
to denote V ’s output. We assume WLOG that Π starts with a verifier message and ends with a
prover message, and say Π has k rounds if the prover and verifier each sends k messages alternately.
The notation 〈v1, p1, . . .〉 specifies a full or partial transcript of Π where v denotes verifier messages
and p denotes prover messages. Π is public-coin if the verifier messages are just disjoint segments
of V ’s random tape.

We may repeat an interactive proof in parallel. Let Πm = 〈Pm, V m〉 be Π repeated in m
parallel sessions; that is, each prover and verifier message in Πm is just concatenation of m copies
of the corresponding message in Π. V m completes Π in all m sessions (or abort in all sessions), and
accepts if and only if all m sessions are accepted by V .

2.2 Zero Knowledge Protocols

In the setting of zero knowledge, we consider an adversarial verifier that attempts to “gain knowl-
edge” by interacting with an honest prover. An m-session concurrent adversarial verifier V ∗ is
a probabilistic polynomial time machine that, on common input x and auxiliary input z, interacts
with m(|x|) independent copies of P concurrently (called sessions); the traditional stand-alone
adversarial verifier is simply a 1-session adversarial verifier. There are no restrictions on how V ∗

schedules the messages among the different sessions, and V ∗ may choose to abort some sessions but
not others. Let ViewP

V ∗(x, z) be the random variable that denotes the view of V ∗ in an interaction
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with P (this includes the random coins of V ∗ and the messages received by V ∗). Note that for
public-coin protocols, the view of an honest verifier is just the transcript of the interaction.

A black-box simulator S is a probabilistic polynomial time machine that is given black-box
access to V ∗ (written as S = SV

∗). Formally, S fixes the random coins r of V ∗ a priori, and S is
allowed to specify a valid partial transcript τ = 〈v1, p1, . . . , pi〉 of 〈P, V ∗r 〉, and query V ∗r for the
next verifier message vi+1. Here, τ is valid if it is consistent with V ∗r , i.e., each verifier message
vj in τ is what V ∗r would have responded given the previous prover messages p1, . . . , pj−1 and the
fixed random tape r. Note that S is allowed to “rewind” V ∗ by querying V ∗ with different partial
transcripts that shares a common prefix.

Intuitively, an interactive proof is zero-knowledge (ZK) if the view of any (stand-alone) adver-
sarial verifier V ∗ can be generated by a simulator. The protocol is concurrent ZK if the view of any
concurrent adversarial verifier can be generated as well. The formal definitions follow.

Definition 1 (Black-Box Zero-Knowledge [GMR89, GO94]). Let Π = 〈P, V 〉 be an interactive
proof (or argument) for a language L. Π is black-box zero-knowledge if there exists a black-box
simulator S such that for every common input x, auxiliary input z and every (stand-alone) adversary
V ∗, SV∗(x,z)(x) runs in time polynomial in |x|, and the ensembles {ViewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and
{SV∗(x,z)(x)}x∈L,z∈{0,1}∗ are computationally indistinguishable as a function of |x|.

Note that because we consider black-box simulation, S does not get access to any “internals” of
V ∗ such as its auxiliary input z.

Definition 2 (Black-Box Concurrent Zero-Knowledge [DNS04]). Let Π = 〈P, V 〉 be an interactive
proof (or argument) for a language L. Π is black-box concurrent zero-knowledge if for every
polynomials m, there exists a black-box simulator Sm such that for every common input x, auxil-
iary input z and every m-session concurrent adversary V ∗, SV

∗(x,z)
m (x) runs in time polynomial in

|x|, and the ensembles {ViewP
V ∗(x, z)}x∈L,z∈{0,1}∗ and {S

V∗(x,z)
m (x)}x∈L,z∈{0,1}∗ are computationally

indistinguishable as a function of |x|.

We also consider a bounded version of concurrent zero-knowledge where the order of quantifiers
are reversed [Bar01].

Definition 3 (Black-Box Bounded Concurrent Zero-Knowledge). Let Π = 〈P, V 〉 be an interactive
proof (or argument) for a language L and let m be a polynomial. Π is black-box m-bounded
concurrent zero-knowledge if there exists a black-box simulator S such that for every com-
mon input x, auxiliary input z and every m-session concurrent adversary V ∗, SV∗(x,z)(x) runs in
time polynomial in |x|. Furthermore, it holds that the ensembles {ViewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and
{SV∗(x,z)(x)}x∈L,z∈{0,1}∗ are computationally indistinguishable as a function of |x|.

2.3 Resettable-Soundness

Informally, given a protocol Π = 〈P, V 〉, a cheating prover P ∗ performing a resetting attack has
the power to reset (i.e., rewind) the honest resettable verifier, resulting in multiple sessions of Π.
Furthermore, in all these sessions, V uses the same random tape that is uniformly chosen before
the attack. For example, a black-box zero-knowledge simulator is a valid resetting attack. We can
consider two different models on how the input instances are chosen for each session. In the model of
resettable-soundness as defined by [BGGL01], P ∗ can adaptively choose different input instances
for each session. We also consider the model where P ∗ is given an input instance that must be used
in all sessions (similar to the definition of resettable zero-knowledge by [CGGM00]); we call this
fixed-input resettable-soundness.
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Definition 4 (Resetting-Attack [BGGL01, Definition 3.1]). A resetting attack of a cheating
prover P ∗ on a resettable verifier V is defined by the following two-step random process, indexed
by a security parameter n:

1. Uniformly select and fix t = poly(n) random-tapes, denoted r1, . . . , rt, for V , resulting in
deterministic strategies Vrj . When an input x ∈ {0, 1}n is also chosen, we call Vrj (x) an
incarnation of V (i.e., V with its randomness set to rj and common input set fixed to x).

2. On input 1n, P ∗ is allowed to interact with poly(n) incarnations of V . P ∗ chooses each
incarnation (adaptively) by choosing x ∈ {0, 1}n and j ∈ [t] (these choices may depend
on P ∗’s previous interactions with other incarnations of V ). P ∗ may freely switch among
interactions with different incarnations of V , and may rewind/reset each incarnation of V .

We further define two variants of resetting attacks. In a fixed-input resetting attack, the cheating
prover P ∗ is given a fixed input instance x to use in all sessions. In a q-query resetting attack,
the cheating prover P ∗ is allowed q queries total for verifier messages (summed over all interactions
among the different incarnations of V ).

Remark. We have chosen the “interleaving” attack model instead of the “non-interleaving” attack
model, where P ∗ must finish its current interaction with an incarnation of V completely, before
starting another interaction (see discussions in [CGGM00, BGGL01]). The two models are equiv-
alent as shown in [CGGM00]. We choose the “interleaving” model because later we will make the
assumption that P ∗ never makes the same query twice to V . The notion of a q-query resetting
attack is also more natural in the “interleaving” model.

Definition 5 (Resettable-Soundness [BGGL01, Definition 3.1]). Let Π = 〈P, V 〉 be a pair of inter-
active machines where V is PPT. We say Π is a resettably-sound proof for a language L (resp.,
resettably-sound argument) if the following condition holds:

Resettable-Soundness: For every resetting attack by P ∗ (resp., polynomial-size P ∗), the prob-
ability that some incarnation Vr(x) accepts and x /∈ L is negligible in n.

We say Π is a q-query fixed-input resettably-sound proof (resp., argument) for a language L
if the resettable-soundness property holds with respect to any q-query fixed-input resetting attack.

3 Impossibility of Public-Coin Black-Box Parallel ZK

In this section we show that only languages in BPP have public-coin concurrent zero-knowledge
protocols. We actually show a stronger result: Except for languages in BPP, no public-coin protocol
remains black-box zero-knowledge when repeated in parallel. The formal theorems are stated below,
where n denotes the security parameter or the input size.

Theorem 1. Suppose language L has a k = poly(n)-round public-coin black-box zero-knowledge
proof Π with soundness error 1/2. If m ≥ k log2 n and Πm is zero-knowledge, then L ∈ BPP.

Theorem 2. Suppose language L has a k = poly(n)-round public-coin black-box zero-knowledge
argument Π with soundness error 1/2. If m ≥ (k2 log k) log2 n and Πm is zero-knowledge, then
L ∈ BPP.

The difference between Theorem 1 and 2 is caused by the difference between proofs and argu-
ments. While the two theorems differ slightly in parameters, their proofs differ greatly. We remark
that our theorems trivially hold with respect to “non-aborting” verifiers since we focus only on
public-coin protocols.
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3.1 Reducing to Resettable Soundness

The proofs of Theorem 1 and 2 begin in the same high-level framework as that of [GK96b]. Suppose
a language L has a k-round, public-coin ZK protocol Π = 〈P, V 〉, and Πm is zero-knowledge with
a black-box simulator S that runs in time nd. To show that L ∈ BPP, we construct a “random-
looking” adversarial verifier, V ∗, and consider the following decision algorithm D: D(x) runs SV∗(x)
to generate a view of V ∗, and accepts x if and only if V ∗ accepts given the generated view (which
in turn occurs if and only if the honest verifier V accepts in all m sessions of the view).

V ∗ is actually a family of adversarial verifiers constructed as follows. Let H be a family of hash
functions that is random enough compared to the running time of S; formally, H should be nd-wise
independent (see [GK96b, CG89]). Given h ← H, let V ∗h be the verifier that when queried with
transcript τ , responds (deterministically) with the message h(τ). We write V ∗ = V ∗H to mean V ∗h
for a randomly chosen h, i.e., when D runs SV∗H, D first chooses h randomly from H and then run
SV
∗
h.
We make two easy observations about SV∗ due to [GK96b]. First, we may assume that whenever

S queries V ∗ with a transcript or outputs a transcript τ , it first queries V ∗ with all the prefixes of
τ ; this only increases the running time of S polynomially. Second, we may assume that S never
queries V ∗ with the same transcript twice (instead S may keep a table of answers). Then the set
of all responses generated by V ∗H is identical to the uniform distribution since H is nd-independent
and S makes at most nd queries to V ∗.

We need to show that decision procedure D is both complete and sound. Completeness states
that if x ∈ L, then D should accept x with probability at least 2/3. This easily follows: The
output of SV∗(x) is indistinguishable from an interaction of 〈Pm, V ∗〉 since S is a zero-knowledge
simulator. Furthermore, 〈Pm, V ∗〉 is identical to m copies of 〈P, V 〉 since V ∗ produces independent,
truly random verifier messages (made possible since V is public coin). Finally, by the completeness
property of Π, V will accept x with probability 1 in all the copies of 〈P, V 〉.

Soundness states that if x /∈ L, then D should accept with probability at most 1/3. That is,
SV
∗
(x) can produce an accepting view of V ∗ with probability at most 1/3. Equivalently, we may

view S as a nd-query fixed-input resettable prover, and show that the protocol 〈Pm, V ∗〉 is nd-query
fixed-input resettable sound. Therefore, Thm. 1 and 2 are completed by the following lemmas,
respectively:

Lemma 3 (Resettably Sound Proofs). Suppose Π = 〈P, V 〉 is a k = poly(n)-round public-coin
black-box zero-knowledge proof with soundness error 1/2. If m ≥ k log2 n and H is a family of
q = poly(n)-wise independent hash-functions, then 〈Pm, V ∗H〉 is q-query fixed-input resettably-sound.

Lemma 4 (Resettably Sound Arguments). Suppose Π = 〈P, V 〉 is a k = poly(n)-round public-coin
black-box zero-knowledge argument with soundness error 1/2. If m ≥ k2 log2 n and H is a family of
q = poly(n)-wise independent hash-functions, then 〈Pm, V ∗H〉 is q-query fixed-input resettably-sound.

Remark. Lemma 3 and 4 may be stronger than necessary in two ways. Firstly, the definition
of resettable soundness requires negligible soundness error, while our main theorems only require
soundness error 1/3. Secondly, the definition of resettable soundness allows the resetting prover to
interact with polynomially many copies of V ∗h with uniformly and independently chosen h’s, while
the zero-knowledge simulator only interacts with one copy of V ∗h for a uniformly chosen h. This
second difference is moot, however, because it is trivial to reduce a resetting attack on polynomially
many copies of V ∗h (with uniformly and independently chosen h’s) to a resetting attack on a single
copy of V ∗h (with uniformly chosen h), with only a polynomial loss in success probability. Therefore,
in our proofs for Lemma 3 and 4, we only consider one copy of V ∗h .
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3.2 Proof of Lemma 3: Resettably-Sound Proofs

Using the soundness amplification theorem of [BM88], protocol 〈Pm, V ∗H〉 has soundness error at
most 1/2m. Let P̂ ∗ be a q-query fixed-input resettable prover. Suppose for the sake of contradiction
that for some input x /∈ L, V ∗H accepts a resettable interaction with P̂ ∗ with probability 1/p(n) for
some polynomial p. We follow the strategy of [GK96b] to use P̂ ∗ in order to break the soundness
of 〈Pm, V ∗H〉.

Whenever P̂ ∗ succeeds in breaking resettable soundness, P̂ ∗ would have queried V ∗ for k verifier
messages that together form an accepting transcript of Πm. A cheating prover of Πm can therefore
run P̂ ∗ internally, guess which queries of P̂ ∗ will form the accepting transcript, and forward them to
an outside honest verifier of Πm. Since P̂ ∗ queries V ∗ for at most q(n) messages, the probability of
guessing all the right queries is at least q−k (one guess for each round of Π). Note that forwarding
queries to an outside honest verifier does not lower the success probability of P̂ ∗ since V ∗ is identical
to a honest verifier (they both respond with random messages). Thus this cheating prover, using P̂ ∗,
can break the soundness of Πm with probability at least (1/p)q−k = 2−Θ(k logn). Since m ≥ k log2 n,
we have 2−m < 2−Θ(k logn) and reach a contradiction.

3.3 Proof of Lemma 4: Resettably-Sound Arguments

We turn to prove our main result. Again we argue by contradiction. Suppose P̂ ∗ is a q-query
fixed-input resettable prover, and suppose P̂ ∗ convinces V ∗H on some input x /∈ L with probability
more than 1/p(n) for some polynomial p. We cannot repeat the proof of Lemma 3 because parallel
repetitions cannot reduce the soundness of arguments beyond being negligibly small Instead, we
directly show a parallel repetition theorem for resettable soundness; that is, we relate the resettable
soundness of 〈Pm, V ∗H〉 to the soundness of Π.

Proof Outline. The rest of this section describes how to construct a cheating prover T for Π. T
runs P̂ ∗ internally and simulates V ∗H in response to P̂ ∗ queries. Every query made by P̂ ∗ is answered
by a uniformly random reply. This perfectly simulates V ∗H since H is q-wise independent and P̂ ∗

makes at most q queries (and never makes the same query twice); at the end of the qth query, T
will have implicitly defined a hash function h ∈ H and simulated V ∗h , and P̂

∗ will have successfully
broken resettable soundness with probability 1/p(n) over the choice of these random replies (i.e.,
generated an accepting view of V ∗H).

To break the (stand-alone) soundness of Π, T chooses one of the m parallel sessions and forward
a complete set of P̂ ∗ queries in that session (one for each round of Π) to an honest outside verifier V .
The goal is to forward the queries on which P̂ ∗ is able to convince V ∗ = V ∗H in protocol Πm. This
is challenging because P̂ ∗ may have multiple queries for each round of Πm. While T must decide to
forward a query or not at the time of the query, P̂ ∗ can wait until all queries are completed before
choosing which queries to form an accepting view of V ∗. To overcome this obstacle, a key part of
our analysis relies on rewinding P̂ ∗ (note that at the same time, P̂ ∗ believes that it is rewinding
V ∗). Our strategy is twofold. First we only forward queries that has some chance (preferably a
good chance) of being included a convincing transcript; this is done by doing test-runs of P̂ ∗. Once
we have forwarded a query, we force P̂ ∗ to use the query to convince V ∗, by repeatedly rewinding
P̂ ∗.

We describe a transcript of P̂ ∗ as an alternating sequence of responses from T and queries from
P̂ ∗, [t1, s1, t2, s2, . . . ], where each P̂ ∗-query si is in fact a partial transcript of Πm that ends with a
prover message, awaiting a verifier response. To avoid confusion, in our analysis, τ and 〈·〉 denote
views of V ∗ (transcripts of Πm), while h and [·] denote transcripts of P̂ ∗ (transcripts of a resettable
execution of Πm). The goal of T is then to generate a full transcript h of P̂ ∗ in which P̂ ∗ generates a
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convincing transcript τ of 〈Pm, V ∗〉, while simultaneously having the foresight to forward (a session
of) all the P̂ ∗-queries pertaining to τ to the external verifier V (i.e., all P̂ ∗-queries in h that are a
prefix of τ). If so, T has broken the soundness of Π, and we call this a successful simulation of
P̂ ∗. Note that because the randomness of P̂ ∗ is fixed, the behaviour of P̂ ∗ is entirely determined
by the T -responses in a transcript.

We start with a brief description of T . T first fixes a random session ̃ ∈ {1, . . . ,m} to be
forwarded. Then in k iterations (one for each round of Π), T incrementally fixes a transcript of
P̂ ∗ and forwards a P̂ ∗-query to V . In more details, at the beginning of iteration i, T starts with a
partial transcript hi = [t1, s1, . . . , s`] of P̂ ∗ that ends with s` = τi, a query for the ith message of Π
(h1 = [], the empty transcript). Then:

Step 1. T forwards session ̃ of the query τi to V , and receives a response v(̃)
i .

Step 2. Fixing the reply v(̃)
i , T uniformly samples completions of the partial transcript hi until a

“successful” completion h is found; specifically, P̂ ∗ on transcript h should produce an accepting
view of V ∗, τ , that extends the query τi. To move onto the next iteration, let τi+1 be the
length i+ 1 prefix of τ , and let hi+1 be the prefix of h up until P̂ ∗ makes the query τi+1.

During the analysis, we first use Raz’s lemma to show that because the number of sessions is
large and ̃ was chosen randomly, we may pretend v(̃)

i is nicely chosen, conditioned on success, just
like the other sessions (chosen by T in step 2). We also show that T rarely aborts.

Proof Details. We now introduce a series of hybrid simulators that formally defines T ; all our
hybrids generate truly random responses to P̂ ∗-queries so that P̂ ∗ cannot distinguish the hybrids
from V ∗. We start with a hypothetical hybrid, and gradually move towards T .

Hybrid 1. Our first hybrid T (1) serves to introduce the general idea of how T queries P̂ ∗ internally;
T (1) does not yet forward messages to the external verifier V .

T (1) builds a full transcript of P̂ ∗ in k+ 1 iterations. In iteration i, T (1) fixes an P̂ ∗-query τi for
the ith message of Πm. This query should have a good chance of being used by P̂ ∗ in an accepting
transcript of Πm, and therefore is a good candidate to forward externally. Note that fixing an
P̂ ∗-query amounts to fixing the transcript of P̂ ∗ up until the desired P̂ ∗-query is made.

We now describe T (1) in detail. In the very beginning, T (1) fixes a random session ̃ ∈ {1, . . . ,m};
eventually the ̃th session will be forwarded externally. After that, T (1) incrementally grows a
transcript of P̂ ∗ in k iterations. During the ith iteration, T (1) receives a partial transcript of P̂ ∗

from the previous iteration, hi = [t1, s1, . . . , s` = τi], where τi is a P̂ ∗-query for the ith verifier
message of Πm (h1 = [], the empty transcript). As an invariant maintained by T (1), it should
be possible to extend hi into a full transcript of P̂ ∗ where P̂ ∗ outputs an accepting view of V ∗

containing the query τi. We call such a full transcript a successful completion of hi. Each iteration
can be further divided into two steps:

Step 1. T (1) does not forward τi to the external V ; instead it simulates a response as follows. T (1)

randomly samples a completion of hi into h, conditioned on success (always possible due to
the invariant). Let v(̃)

i be the response to τi in the ̃th session in the successful completion h.
Let h̃i be a partial extension of the partial transcript hi where the session ̃ response to τi is
fixed to v(̃)

i (but the responses in other sessions are not specified).

Step 2. T (1) now samples a completion of h̃i into h̃ conditioned on success (note that h from the
previous step is one such completion). Under transcript h̃, P̂ ∗ would output an accepting view
τ of V ∗ (note that τ must extend τi). Let τi+1 be the P̂ ∗ query for the i+ 1st verifier message
in τ (note that τi+1 extends τi by definition of success). T (1) then sets hi+1 to be the prefix
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...
...

τi −→ −→ −→ −→
τ ̃i−→

←− ←−
ṽi←− ←−

ṽi←−

−→ −→ −→ −→
...

τi+1 −→ −→ −→ −→
τ ̃i+1−→

ṽi+1←−
ṽi+1←−

T V

P̂ ∗ V ∗H
hi h̃i

hi+1 h̃i+1

Figure 1: In order to interact with an outside honest verifier V , the reduction T internally maintains
a partial interaction between the given resetting prover, P̂ ∗, and the (supposedly resettably-sound)
verifier V ∗H . The figure captures T after Step 1 of the i + 1stiteration, and illustrates some of the
notations we define in the analysis.

of h̃ up to when P̂ ∗ makes the query τi+1. Note that the invariant holds since by definition h̃
is a successful completion of hi+1.

Note that in Step 2 of the final (kth) iteration, T (1) simply outputs h̃ as a full transcript of P̂ ∗

(there is no τk+1 to fix). Due to the invariant, T (1) always produce a transcript of P̂ ∗, on which P̂ ∗

outputs an accepting transcript τ . Moreover, the prefixes of τ would be the same τ1, . . . , τk that
were “chosen” by T (1) in each iteration (and would eventually be forwarded to the external verifier
V in later hybrids).

Hybrid 2. Our second hybrid, T (2), describes a way to efficiently sample successful completions in
Step 2 of each iteration (Step 1 will be replaced with the external verifier and is left alone for now).
In Step 2, T (2) randomly completes the given partial execution (h̃i) up to 100k2pq times, until a
successful completion is found. If none of the completions are successful, T (2) aborts. Note that
conditioned on T (2) not aborting, the output distribution of T (2) is identical to T (1).

To show that T (2) aborts with small probability, suppose for now that T (2) is allowed to sample
an unbounded number of completions. Let us bound the expected number of random completions
that are needed to sample a successful one. In the following analysis we distinguish between two
probability spaces: PrP [·] is used to measure probabilities over a single execution of P̂ ∗. On the
other hand, PrT [·] is used to measure probabilities over an execution of T (2) (with unbounded
number of completions) which includes rewinding and executing P̂ ∗ multiple times.

Let Hi and H̃i be the set of possible partial transcripts of P̂ ∗ that is given to T (2) in Step 1 and
Step 2 of the ith iteration, respectively. Given h ∈ Hi (or H̃i), let PrP [h] denote the probability
that a transcript of P̂ ∗ has prefix h, and let PrT [h] denote the probability that T (2) is given h in
the ith iteration; similarly, PrP [· | h] and PrT [· | h] are probabilities conditioned on these events
occurring. Let Ah be the event (over the P̂ ∗ probability space) that a transcript of P̂ ∗ has prefix
h and is a successful completion of h; as a special case, A = A∅ is just the event that P̂ ∗ outputs
an accepting transcript. Also let Ri be the random variable (over the T (2) probability space) that
denotes the number of completions performed by T (2) in step 2 of iteration i.

First we give a claim. Intuitively, the claim says that the probability of T (2) fixing h is propor-
tional to the probability of successfully completing h; the normalizing factor is simply PrP [A], the
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probability that P̂ ∗ produces an accepting transcript.

Claim 5. Let h ∈ H̃i. PrT [h] PrP [A] = PrP [Ah].

Proof. Recall that the behaviour of P̂ ∗ is entirely determined by the random messages generated
by T (2). Let us consider a complete binary tree T of depth nd that represents all possible length nd

random bit-strings generated by T (2). Then every partial execution of P̂ ∗ corresponds to a node in
T based on the verifier messages received so far by P̂ ∗ in h.

Let us focus on the leaf nodes in T since they occur with equal probability. Given h, define
L(h) to be the set of leaf nodes in T that are a children of h; these nodes corresponds to possible
completions of h. We also define G(h) to be the subset of L(h) that corresponds to successful
completions of h (i.e. leaves where the event Ah is true). Finally let L0 = L(∅) be all the leaf nodes,
and G0 = G(∅) be the subset of L0 that corresponds to executions where P̂ ∗ produces an accepting
transcript.

Recall that our goal is to prove that

PrT [h] PrP [A] = PrP [Ah] .

Clearly

PrP [A] =
|G0|
|L0|

PrP [Ah] =
|G(h)|
|L0|

(1)

To expand PrT [h], let h̃1, h2, . . . , hi, h̃i = h be the prefixes of h given to T (1) in previous steps of
previous iterations. As we see below, the expression for PrT [h] telescopes:

PrT [h] = PrT [h̃1]
i∏

`=2

PrT [h` | h̃`−1] PrT [h̃` | h`]

=
|G(h̃1)|
|G0|

i∏
`=2

|G(h`)|
|G(h̃`−1)|

|G(h̃`)|
|G(h`)|

=
|G(h̃i)|
|G0|

=
|G(h)|
|G0|

(2)

Equations (1) and (2) together gives the claim.

Now we bound the expected number of samples needed to find a successful completion.

Lemma 6. ET [Ri] ≤ pq.

Proof. First expand ET [Ri] by conditioning on the transcript h fixed in Step 1:

ET [Ri] =
∑
h∈H̃i

PrT [h]ET [Ri | h] (3)

Recall that in Step 2, T (2) samples random completions of h until a successful completion is found.
Therefore

ET [Ri | h] =
1

PrP [Ah | h]
⇒ ET [Ri] =

∑
h∈H̃i

PrT [h]
1

PrP [Ah | h]
(4)
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By expanding the RHS of Claim 5 and rearranging terms, we have

PrT [h] PrP [A] = PrP [Ah] = PrP [h] PrP [Ah | h]

⇒ PrT [h]
1

PrP [Ah | h]
= PrP [h]

1
PrP [A]

≤ pPrP [h]

since we assumed PrP [A] ≥ 1/p. Substituting this back into (4) gives

ET [Ri] ≤ p
∑
h∈H̃i

PrP [h] (5)

Finally, we may break up the set H̃i based on the length of h which ranges from 1 to q (where
length is the number of P̂ ∗-queries). Since each transcript of P̂ ∗ has exactly one length ` prefix:

ET [Ri] ≤ p

q∑
`=1

∑
h∈H̃i,|h|=`

PrP [h] ≤ p

q∑
`=1

1 = pq

Finally, we show that 100k2pq random completions are enough for T (2).

Lemma 7. T (2) aborts with probability at most 1/5.

Proof. Since ET [Ri] =
∑

h̃i
PrT [h̃i]ET [Ri | h̃i] = ET [ET [Ri | h̃i]] ≤ pq, the Markov inequality

states that the probability of T (2) fixing an h̃i such that ET [Ri | h̃i] ≥ 10kpq is at most 1/(10k).
For each “good” h̃i where ET [Ri | h̃i] < 10kpq, we apply the Markov inequality again to obtain
PrT [Ri ≥ 100k2pq | h̃i] ≤ 1/(10k). Using the union bound we see that in any iteration, T (2) aborts
in Step 1 with probability at most 1/(5k). A final union bound over k iterations of Step 2 shows
that T (2) aborts overall with probability at most 1/5.

Hybrid 3. Our third and final hybrid T (3) = T differs from T (2) in Step 1 of each iteration. Recall
that some session ̃ is chosen randomly as the forwarding session. Instead of generating v(̃)

i in Step
1, T (3) asks the external honest verifier V for a verifier message. Because Π is public-coin, T (3) can
continue to complete partial transcripts of P̂ ∗ even if session ̃ is forwarded to V externally.

Given transcript hi = [t1, s1, . . . , s` = τi] in iteration i, T (3) forwards session ̃ of τi to V , and
uses the response from V as v(̃)

i in Step 2.2 Suppose for now that T (3) does not abort and terminates
successfully. Then P̂ ∗ would have generated an accepting transcript τ of Πm. Since τ1, . . . , τk are
prefixes of τ , session ̃ of τ would be an accepting transcript of Π consisting of forwarded prover
messages and responses from V . This breaks the soundness of Π.

Therefore, it remains to show that T (3) is successful with probability more than 1/2. We will use
Raz’s lemma [Raz98, Claim 5.1] in analogy with [IJK07, HPWP10] to show that v(̃)

i as generated
by T (1) and T (2) is actually very close to the uniformly random messages generated by the honest
verifier V . First we cite Raz’s lemma as it appears in [Hol07, Lemma 5]:

Lemma 8. Let {Uj}j∈[m] be independent random variables on U with probability distribution PUj .
Let W be an event in Um and Pr[W ] be measured according to the joint probability distribution
ΠjPUj . Then

m∑
j=1

∆(Uj |W,Uj) ≤

√
m log

(
1

Pr[W ]

)
2Strictly speaking, the interaction between T (3) and the honest verifier V is non-resetting. Therefore, instead of

forwarding session ̃ of query τi to V , T (3) simply sends the last prover message in session ̃ of the query τi to V . For
ease of exposition, we continue to use the phrase “T (3) forwards the query τi” to mean the above.
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where ∆ is the statistical distance between distributions, and Uj |W is the jth component of an
element in Um chosen based on the joint probability distribution ΠjPUj , conditioned on W .

In other words, let {Uj}j be independent random variables, and let W be an event over ΠjUj .
If W occurs with high probability and there are many Uj , then on average over j, sampling Uj
conditioned on W does not differ much from simply sampling Uj . Lemma 8 allows us the bound
the change in success probability when T (3) forwards messages from a random session to V .

Lemma 9. T (3) fails with probability at most 3/10 +O(1/ log n).

Proof. We first construct a series of finer hybrids, T1, . . . , Tk+1, where Ti proceeds as T (2) until the
start of iteration i (no forwarding), and continues as T (3) afterwards (with forwarding)3. Observe
that T1 = T (3) and Tk+1 = T (2).

Consider two neighboring hybrids, Ti and Ti+1, which differ only in iteration i. Let h be the
partial execution given in iteration i. For j ∈ [m], let Uj be the random variable that denotes all the
additional session j messages sent by T to randomly complete h, i.e., {Uj}j are independent and
uniformly random. Let W h be the event that the random messages U1, . . . , Um together produced
a successful completion of h. By definition, the distribution of v(̃)

i produced by Ti+1 (i.e., T (2)) is
just the first message of Ũ|W h. On the other hand, the distribution of v(̃)

i produced by Ti (i.e.,
T (3)) is just the uniform distribution, just like the first message of Uj .

Since Ti−1 and Ti only differ in how v
(̃)
i is produced, their difference in success probability can

be bounded by the statistical difference in the distributions of v(̃)
i . This is in turn bounded by:

∑
h∈Hi

m∑
j=1

PrT [h] Pr[̃ = j]∆(Uj |W h, Uj)=
∑
h∈Hi

PrT [h]

1
m

m∑
j=1

∆(Uj |W h, Uj)

 (*)

Lemma 8 states that for any event W ,

1
m

m∑
j=1

∆(Uj |W,Uj) ≤

√
1
m

log
(

1
Pr[W ]

)

Observe that before iteration i, Ti and Ti+1 are identical to T (2). When T (2) does not abort, T (2)

is identical to T (1). In that case, Lemma 6 along with the Markov inequality implies that except
with probability 1/(10k), T (2) fixes a “good” h with ET [Ri | h] ≤ 10kpq, so that

Pr[W h] = PrP [Ah | h] =
1

ET [Ri | h]
≥ 1

10kpq

We can now break the sum in (*) into two parts. Observe that

∑
bad h ∈ Hi

PrT [h]

 1
m

m∑
j=1

∆(Uj |W h, Uj)

 ≤ ∑
bad h ∈ Hi

PrT [h] ≤ 1
10k

3This still makes sense since Π is a public-coin protocol; the outside verifier can directly generate a verifier response
for any round of the protocol.
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since statistical distances are upper bounded by 1, and

∑
good h ∈ Hi

PrT [h]

 1
m

m∑
j=1

∆(Uj |W h, Uj)


≤

∑
good h ∈ Hi

PrT [h]

√
1
m

log(10kpq) ≤
√

1
m

log(10kpq)

since
∑

h∈Hi
PrT [h] = 1. Together, they show that (*) is at most

1
10k

+

√
1
m

log (10kpq) =
1

10k
+O

(
1

k
√

log n

)
since m ≥ k2 log2 n. Summing up over the hybrids, and recalling that T (2) fails with probability at
most 1/5 (Lemma 7), T (3) fails with probability at most

1
5

+ k

(
1

10k
+O

(
1

k
√

log n

))
≤ 3

10
+O

(
1√

log n

)
Lemma 9 shows that T is successful with probability > 1/2, and completes the proof of Lemma 4.

Remark. As with most lower bounds for black-box zero-knowledge, a careful reading reveals that
Theorems 1 and 2 also apply to more liberal definitions of zero-knowledge, such as ε-zero-knowledge4

[DNS04] and zero-knowledge with expected polynomial time simulators.

4 Public-Coin Zero-Knowledge in the Bare Public Key Model

Many setup assumptions have been used to construct concurrent zero-knowledge with better effi-
ciency than the standard model. For example, in the CRS (common reference string) model, even
non-interactive zero-knowledge is possible [FLS90]. Other “weaker” setups have produced varying
results, and we will be concentrating on the bare public key model.

In the Bare Public-Key (BPK) model [CGGM00], every player has a public key that can be
accessed by any other player. When a protocol is repeated in parallel, we assume that the honest
parties use fresh independent public keys for each parallel session. By assuming that all public
keys are properly registered before a protocol begins, Canetti, Goldreich, Goldwasser and Micali
[CGGM00] showed that constant-round, private-coin arguments exist for NP even if we require black-
box resettable zero-knowledge, a property that implies black-box concurrent zero-knowledge. In
constrast, in the plain model, Õ(log n) rounds are required for concurrent black-box zero-knowledge
proofs [CKPR01]. It is therefore natural to ask if the BPK setup can overcome our lowerbound for
public-coin zero-knowledge protocols.

In this section we extend our impossibility result from Sect. 3 to the BPK model. We actually
extend our result to a larger class of slightly-private-coin protocols, defined with the following
properties:

1. The first message of the protocol, from the verifier, is allowed to be private coin. All other sub-
sequence verifier messages are public-coin, i.e., independent segments of the verifier’s random
tape.

4In ε-zero-knowledge, the indistinguishability gap between the view of V ∗ and the view generated by the simulator
is allowed to be an inverse polynomial, as opposed to negligible.
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2. At the end of the protocol, the verifier may run a private coin algorithm to accept or reject
the interaction. In particular, the verifier’s decision may depend on the private coins used to
generate the first message.

Note that every public-coin protocol in the BPK model can be transformed into a slightly-private-
coin protocol, because

1. The verifier can send its public key to the prover in the first message (property 1).

2. The verifier can base its acceptance decision on its secret key (property 2).

Our modified theorem is the following:

Theorem 10. Suppose language L has a k = poly(n)-round slightly-private-coin black-box zero-
knowledge argument Π with negligible soundness error in n. If m ≥ (k2 log2 k) log2 n and Πm is
zero-knowledge, then L ∈ BPP.

Recall that in the analysis of Theorem 2, we treat the black-box zero-knowledge simulator S as
a resetting prover P̂ ∗ of 〈Pm, V ∗〉, and use P̂ ∗ to construct a machine T , which in turn contradicts
the soundness of Π. We now have a problem whenever T needs to sample a successful completion
of a partial transcript of P̂ ∗, since T does not know whether the external verifier V would accept
or reject the transcript produced by P̂ ∗. To overcome this problem, we follow an approach similar
to [BIN97, HPWP10] by guessing whether V would accept or reject based on whether the other
verifiers, simulated by T , accept or reject their respective parallel sessions.

Proof. We extend the analysis of Theorem 2 in analogy with [HPWP10]. We first describe how T
guesses if V accepts or rejects in the forwarded session ̃. Whenever T completes a partial execution
of P̂ ∗, let z−̃ be the number of sessions, excluding session ̃, in which S produced a rejecting view.
We exclude session ̃ for the aforementioned reason that without knowing the private key (or private
coins) of the external verifier V , T cannot tell if V will accept or reject the view.

Let w−̃ be a Bernoulli random variable with Pr[w−̃ = 1] = 2−νz−̃ , where ν is an asymptotically
small parameter to be determined later. w−̃ corresponds to T ’s guess: If w−̃ = 1, T will consider
the completion successful, and vice versa. Intuitively, T is more likely to consider a completion as
a success if the number of rejecting sessions is fewer.

To facilitate the analysis, we also consider a hypothetical but more symmetric process. Given a
transcript generated by P̂ ∗, let z be the number of sessions, including session ̃, in which P̂ ∗ produced
a rejecting view. Similarly, let w be the Bernoulli random variable with Pr[w = 1] = 2−νz.

We now prove Theorem 10 with the same framework as Theorem 2, using the following modified
hybrids. Hybrids T (1), T (2) and T (3) are constructed as before, except they now compute z and w
to determine if a completion is successful. The final machine, T , differs from T (3) by computing z−̃
and w−̃ instead.

Claim 11. The probability that T (1) generates a rejecting view in session ̃ is at most:

3
m

(
− log ν2

ν
+ 4
)

Proof. The proof of this claim essentially follows from an analysis in [HPWP10] (which contained
more general parameters). For the sake of completeness, we include their analysis without the extra
parameters here.
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Before introducing the public key extension, T (1) simply samples a random successful transcript
of P̂ ∗ (see Claim 5). After adopting the new notion of success based on w, T (1) now samples a
random transcript of P̂ ∗ conditioned on w = 1. That is, T (1) outputs a transcript of P̂ ∗ that
generates rejecting views in j sessions with probability proportional to 2−νj .

Since T (1) chooses ̃ randomly, it is enough to bound the expected number of rejecting sessions.
Let pj be the probability that in a random execution of P̂ ∗, the output view contains j rejecting
sessions. Then, the expected number of rejecting verifiers is∑m

j=0 jpj2
−νj∑m

j=0 pj2−νj
(6)

[HPWP10] gives a bound of (6) with more general parameters. For the sake of completeness, we
include their analysis below without the extra parameters.

Recall that by assumption, P̂ ∗ generates an output view in which all sessions accept with
probability at least 1/3. Therefore we can lower bound the denominator of (6) by

m∑
j=0

pj2−νj ≥ p0 ≥ 1/3 .

To upper bound the numerator, we use the following inequality:
∞∑
j=0

j2−νj =
2−ν

(1− 2−ν)2
≤ 1

(1− 2−ν)2
≤ 4
ν2

.

The last inequality follow from the fact that 1−2−ν ≥ ν/2 for small ν. Directly apply this bound to
the numerator (using pj ≤ 1) gives an overly loose bound since ν is asymptotically small. Instead,
we split the expression of the numerator at some parameter t:

m∑
j=0

jpj2−νj ≤ t
m∑
j=0

pj2−νj +
m−t∑
j=1

jpt+j2−ν(t+j)

≤ t+
4
ν2

2−νt .

Setting t = − log ν2/ν, we see that the expected number of rejecting verifiers is at most

3
(
− log ν2

ν
+ 4
)

.

Since T (1) chooses ̃ uniformly from {1, . . . , k}, the probability that T (1) outputs a view that rejects
in session ̃ is

3
m

(
− log ν2

ν
+ 4
)

.

Lemma 12. The probability that T (2) aborts is at most 1/5. Otherwise, the output of T (2) is
identical to T (1).

Proof. By computing w and z, there are now more “successful” executions than before (originally,
only executions where z = 0, i.e., no rejecting sessions, are successful). Therefore, T (2) now aborts
with less probability than before, which is bounded by 1/5 (Lemma 7).
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Lemma 13. T (3) fails to produce an accepting view in session ̃ with probability at most

3
m

(
− log ν2

ν
+ 4
)

+
3
10

+O

(
1

log n

)

Proof. This follows from Claim 11, and by applying Raz’s lemma in the same manner as in Lemma 9.

Lemma 14. The output of T (3) and T differs statistically by at most kν.

Proof. T (3) and T differs in how a successful completion is recognized. For any completion, the
difference in probability of it being considered successful by T (3) and T is:

Pr[w−̃ = 1]− Pr[w = 1] = 2−νz−̃ − 2−νz ≤ 2−ν(z−1) − 2−νz ≤ 1− 2−ν ≤ ν .

For each round of protocol Π, T (3) and T repeatedly perform the same task (completing partial
transcript of S) until w = 1 or w−̃ = 1, respectively. Therefore the statistical difference between
the two process is at most kν.

Combining Lemma 13 and 14, we see that T fails to break the soundness of Π with probability
at most

3
m

(
− log ν2

ν
+ 4
)

+
3
10

+O

(
1√

log n

)
+ kν

By setting ν = 1/
√
km, the expression becomes

3

√
k

m
log(km) +

12
m

+
3
10

+O

(
1√

log n

)
+

√
k

m

Since m ≥ k2 log2 k log2 n, we conclude that T fails with probability at most 3/10 + o(1). That is,
T succeeds with non-negligible probability, contradicting the soundness of Π.

5 Public-Coin Bounded Concurrent Zero-Knowledge

In this section we give a family BoundedConcZK of public-coin proofs for NP, parametrized by
k. The proof with parameter k has 2k3 + 4 rounds, and is k-bounded concurrent zero-knowledge
assuming the existence of one-way functions, whenever k = ω(log n) where n is the input size.
BoundedConcZK requires the use of statistically hiding commitment schemes.

5.1 Commitment Schemes

Commitment protocols allow a sender to commit itself to a value while keeping it secret from the
receiver ; this property is called hiding. At a later time, the commitment can only be opened to
a single value as determined during the commitment protocol; this property is called binding.
Commitment schemes come in two different flavors, statistically binding and statistically hiding; we
only make use of statistically binding commitments in this paper. Below we sketch the properties
of a statistically binding commitment; full definitions can be found in [Gol01].

In statistically binding commitments, the binding property holds against unbounded ad-
versaries, while the hiding property only holds against computationally bounded (non-uniform)
adversaries. The statistical-binding property asserts that, with overwhelming probability over the
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randomness of the receiver, the transcript of the interaction fully determines the value committed
to by the sender. The computational-hiding property guarantees that the commitments to any two
different values are computationally indistinguishable.

Non-interactive statistically-binding commitment schemes can be constructed using any one-to-
one one-way function (see Section 4.4.1 of [Gol01]). Allowing some minimal interaction (in which
the receiver first sends a single random initialization message), statistically-binding commitment
schemes can be obtained from any one-way function [Nao91, HILL99].

5.2 A Bounded Concurrent Public-Coin ZK Protocol

Our construction of BoundedConcZK is similar in spirit to the concurrent zero-knowledge pro-
tocol of [RK99]. Given a language L ∈ NP and a parameter k, we construct a two stage public-coin
proof 〈P, V 〉 as follows. In stage one, 2k3 rounds of messages are exchanged where in each round,
the prover gives a statistically binding commitment of a random bit pi, and the verifier responds
with a random bit vi; we call pi = vi a correct guess (note that unlike [RK99], the verifier does
not commit to the bits vi). In stage two, 〈P, V 〉 runs a 4-round public-coin witness indistinguishable
proof of the modified NP statement “either x ∈ L or that pi = vi for k3 + k2/2 values of i”, where
x is the problem instance. This can be instantiated with a parallel repetition of the Blum Hamil-
tonicity protocol [Blu86] with 2-round statistically binding commitments constructed from one-way
functions. The verifier accepts if the prover is successful with the stage two proof.

Protocol BoundedConcZK

Common Input: An instance x of a language L ∈ NP and a parameter k.

Stage One: For i from 1 to 2k3:

P → V : Commit to a random bit pi using a statistically binding commitment.

V → P : Reply with a random bit vi.

Stage Two: A 4-round public-coin witness indistinguishable proof (e.g., parallel repetitions of
the Blum Hamiltonicity protocol [Blu86]) of the NP statement:(

there exist distinct i1, . . . , ik3+ 1
2 k2 s.t. pij

= vij
for all j

)
∨ (x ∈ L)

Figure 2: Our public-coin black-box bounded concurrent zero-knowledge protocol.

We choose 2k3 rounds of interaction in Stage One of BoundedConcZK for the following two
reasons. First, by the Chernoff bound, we expect that no adversarial prover can have more than
k3 + O(

√
k3) correct guesses. Hence BoundedConcZK is sound. On the other hand, a zero-

knowledge simulator can repeatedly rewind the verifier until it gets a correct guess. Intuitively
(and shown formally later), in each round of stage one, the simulator can set one extra pi = vi for
some session, in addition to “natural luck” (that gives correct guesses for half of the sessions). Since
the number of sessions is bounded by k, the simulator is able to have k3 + O(k3/k) = k3 + O(k2)
correct guesses per session. This provides the simulator with a trapdoor to simulate stage two of the
protocol, and hence BoundedConcZK is bounded concurrent zero-knowledge. We remark that k3

was chosen for the sake of simplicity and is not optimized. We show completeness and soundness
below.

BoundedConcZK is clearly complete. A prover given a correct problem instance and witness
pair, (x ∈ L,w), can commit to random bits in stage one, and use w to successfully complete the
stage two proof.
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We next show that BoundedConcZK has negligible soundness error. Suppose x /∈ L. Then
there are two ways for the prover to mislead the verifier:

1. The prover may have pi = vi for k3 + k2/2 (or more) values of i either by breaking the
binding property of the commitment, or by guessing luckily. The former occurs with negligible
probability since the commitment is statistically binding. The latter occurs with probability
e−k/4 by the Chernoff bound5.

2. Otherwise, the prover may break the soundness of the stage two proof, which occurs with
probability at most 2−k due to the parallel repetitions.

Since k = ω(log n), both e−k/4 and 2−k are negligible in n.

5.3 Black-Box Bounded Concurrent Zero-Knowledge

We construct a black box simulator S such that given an adversarial verifier, V ∗, SV∗ generates
the view of V ∗ in BoundedConcZK, provided that the number of concurrent sessions m satisfies
m ≤ k. The goal of S is to obtain as many correct guesses as possible by rewinding V ∗. Towards
that goal, S employs a simple greedy strategy to incrementally generate and fix a partial view of V ∗.
Whenever V ∗ sends S a first stage message vi, S checks if it had guessed correctly when committing
to pi. If so, S lengthens the partial view of V ∗ to include this correct guess. Otherwise, S rewinds V ∗

back to the previously generated partial view. This “incremental strategy” is somewhat reminiscent
of [Lin03], but since our protocol is public-coin, the actual analysis is quite different. Additionally,
we take care to always simulate the stage two proof in a straight line fashion without rewinds, so
that we may use a simple hybrid argument to show the zero-knowledge property.

We use superscripts to distinguish messages from different sessions. To prevent S from focusing
too much on one particular session, we keep m counters, c1, . . . , cm, to record how much “work” has
been done in each session. In general, S proceeds as follows to incrementally fix the view (originally
the empty view is fixed). When asked to provide a prover message:

1. S commits to a fresh random bit for each stage one prover message.

2. For each stage two proof, S aborts if in this session, pi = vi for less than k3 + k2/2 values of
i. Otherwise, S uses this as a witness to generate the prover messages in the stage two proof.

When receiving a verifier message:

3. If S receives a message vji (from session j) and cj < 2k2, it checks if the commitment to pji is
part of the fixed partial view. If yes, S simply continues, “giving up” on this guess. Otherwise,
S checks if pji = vji . If yes, S extends the fixed partial view up to message vji and increments
cj ; in this case we say vji is rigged. If p

j
i 6= vji , then S rewinds V ∗ to start a fresh continuation

from the previously fixed partial view.

4. If S receives the second stage two verifier message from any session (e.g., the challenge message
of the Blum Hamiltonicity protocol), it extends the fixed partial view up to the just received
verifier message. As a consequence, all stage two proofs are simulated by S in a straight-line
fashion without rewinds.

5Here we use the following form of Chernoff bound. If {Xi} are i.i.d. satisfying Pr[Xi = 0] = Pr[Xi = 1] = 1/2,
then Pr[

Pn
i=1Xi ≥ n/2 + a] ≤ e−2a2/n
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5. If S has performed k − 1 rewinds without rigging a message or encountering a stage two
verifier message, and on the kth try again receives vji 6= pji where p

j
i is not fixed and cj < 2k2,

S simply gives up and pretend to rig vji anyway (albeit incorrectly). That is, S extends the
fixed partial view up to message vji and increments cj .

The next two claims show that S is a k-bounded black-box zero-knowledge simulator when k ∈
ω(log n).

Claim 15. S runs in (strict) polynomial time.

Proof. S performs at most km(2k2) rewinds, which is polynomial in n.

Claim 16. If x ∈ L and m ≤ k, SV∗(x, z) and ViewP
V ∗(x, z) are computationally indistinguishable

over n.

Proof. We introduce a series of hybrids.

Hybrid 1. Our first hybrid S1 is given witness w to the statement x ∈ L. S1 proceeds identically
as S until a stage two proof is reached. S1 aborts if S aborts, but uses the witness w instead
of the various pi’s to complete the stage two proof. Even though S performs many rewinds, S
never rewinds a partial stage two proof. Therefore, SV∗(x, z) and SV

∗
1 (x, z) are computationally

indistinguishable because the stage two proof is witness indistinguishable.

Hybrid 2. Our second hybrid S2 is identical to S1 except that it samples two random bits for
each stage one commitment pi and qi. S2 commits to pi, but checks vi against qi. Since S1

gives polynomially many commitments and run in polynomial time, and since each commitment is
computationally hiding and independent from the rest of the execution of S1 (stage two proofs are
provided using w), SV∗1 (x, z) and SV∗2 (x, z) are computationally indistinguishable.

Hybrid 3. Our third hybrid S3 is identical to S2 except that S3 always gives a stage two proof
using witness w even if S2 aborts. To see that SV∗2 (x, z) and SV∗3 (x, z) are computationally indistin-
guishable, it suffices to show that S2 aborts with negligible probability.

Observe that whenever S extends the fixed partial view (either by rigging a commitment, or by
encountering a verifier challenge in a stage two proof), at most one commitment from each session
with less than 2k2 rigged messages is fixed as part of the simulator output. This is because before
encountering a second commitment in any session, S would first try to rig the first commitment.
For each session, S rigs at most 2k2 stage one commitments and encounter at most one stage two
verifier challenge. Therefore, the number of commitments fixed per session without rigging is at
most (k−1)(2k2 +1) = 2k3−(2k2−k+1). In other words, every session will have at least 2k2−k+1
commitments rigged.

We now show that except with negligible probability, S2 will have k3 + k2/2 correct guesses per
session. Recall that the guesses of S2, qi, are independent from V ∗’s responses since these guesses
play no part in the commitments sent to V ∗. Therefore, except with probability poly(n)2−k, every
rigged commitment is a correct guess. Next, for the 2k3 − (2k2 − k + 1) ≥ 2k3 − 2k2 messages
that are not rigged, we apply the Chernoff bound to see that except with probability e−O(k), we
should have at least (k3 − k2) − k2/4 = k3 − 5k2/4 correct guesses. Thus, except with negligible
probability6, we have a total of (k3− 5k2/4) + (2k2− k+ 1) ≥ k3 + k2/2 correct guesses as desired.

Final step. S3 is now identical to P (sends identically distributed messages) except that it may
rewind V during the execution. But S3 only rewinds if qi 6= vi, an event independent from the
protocol execution. Therefore SV∗3 (x, z) is identical to ViewP

V ∗(x, z). This concludes the proof.

6Recall again that 2−k and e−O(k) are negligible in n since k = ω(logn).
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6 Application to Resettably-Sound Arguments

In this section we show how to achieve more general notions of resettable soundness that were not
required for our main theorem. First, we need an argument of knowledge as a building block.

6.1 Proofs and Arguments of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover convinces the verifier
that it possesses, or can feasibly compute, a witness for the statement proved.

Definition 6 (Proof of knowledge [BG92]). An interactive protocol Π = 〈P, V 〉 is a proof of
knowledge (resp. argument of knowledge) of language L with respect to witness relation RL if
Π is indeed an interactive proof (resp. argument) for L. Additionally, there exists a polynomial q, a
negligible function ν, and a probabilistic oracle machine E, such that for every interactive machine
P ∗ (resp. for every polynomially-sized machine P ∗) and every x ∈ L, the following holds:

1. If Pr[〈P ∗, V 〉 (x) = 1] > ν(|x|), then on input x and oracle access to P ∗(x), machine E outputs
a string from the RL(x) within an expected number of steps bounded by

q(|x|)
Pr[〈P ∗, V 〉 (x) = 1]− ν(|x|)

The machine E is called the knowledge extractor.

6.2 Resettably-sound arguments

[GK96a] implicitly shows that any constant-round public-coin argument is fixed-input resettably-
sound if the verifier uses a pseudo-random function to generate its messages. [BGGL01, Proposition
3.5] extends the analysis to show that any constant-round public-coin argument of knowledge for
L ∈ NP is a (full-blown) resettably-sound argument of knowledge of L, again if the verifier uses
a pseudo-random function to generate its messages. We give a pair of analogous theorems below,
based on our techniques in Sect. 3.

Theorem 17. Let Π = 〈P, V 〉 be a public-coin argument for an NP language L with negligible
soundness error. Define Π̃m = 〈Pm, Ṽ m〉 to be m parallel repetitions of Π with the following
modification: Ṽ m will sample a pseudo-random function f at the beginning of the protocol, and
construct each verifier message by applying f to the prover messages received so far. Then, whenever
m ≥ k2 log2 n, Π̃m is a fixed-input resettably-sound argument.

Theorem 18. Let Π = 〈P, V 〉 be a public-coin argument of knowledge for an NP language L with
negligible soundness error. Define Π̃m = 〈Pm, Ṽ m〉 similarly to Theorem 17. Then, whenever
m ≥ k2 log2 n, Π̃m is a resettably-sound argument of knowledge.

Note that in contrast with Sect. 3, we have replaced multi-wise independent hash-functions with
pseudo-random functions. This is because a resettably-sound argument needs to guard against all
polynomial-time resetting attacks, and so we cannot assume a universal bound on the running time
of the attacks.

Proof sketch of Theorem 17. Suppose some polynomial time P ∗m breaks the fixed-input resettable-
soundness property against Ṽ m. Let V̂ m be a hybrid verifier that is identical to Ṽ m except that
V̂ m uses a truly random function F instead of a pseudo-random function f . Then, by the property
of a pseudo-random function, P ∗m also breaks the fixed-input resettable-soundness property against
V̂ m. Now, the techniques of Sect. 3.3 shows how to to construct a cheating P ∗ based on P ∗m that
contradicts the soundness property of Π. This gives a contradiction.
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Proof sketch of Theorem 18. We use the same techniques as [BGGL01]. Consider using the same
proof sketch as Theorem 17. It is easy to extend the techniques of Sect. 3.3 to full-blown resettable
attacks where P ∗m selects the input instances adaptively. The main subtlety, as pointed out by
[BGGL01], is the hybrid argument involving the pseudo-random functions.

We need to show that if P ∗m breaks the resettable-soundness property against the pseudo-random
Ṽ m, then it should also break the resettable-soundness property against the truly random V̂ m. The
subtlety here is that a computationally-bounded distinguisher cannot determine whether P ∗m has
completed a successful resetting attack or not, because it cannot determine whether the x’s chosen
by P ∗m are in L or not. To overcome this obstacle, we require Π to be an argument of knowledge,
i.e., there is a witness-extraction algorithm. We may then apply the witness-extraction algorithm
to P ∗ (constructed from P ∗m) to determine whether the input instance accepted by V are indeed in
the language L or not.

Acknowledgements. We would like to thank Johan Håstad and the reviewers for invaluable
comments, and for highlighting our work’s connection with resettable soundness.
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